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a b s t r a c t

An algorithm based on the fifth-order Runge–Kutta (RK5) method was used to compute the five stability
regions in a quadrupole ion trap (Paul trap). Except for the first region, the calculations were made for
the positive values of a in the a–q plane. Computation of these regions for a Paul trap has been carried
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out for the first time using the fifth-order Runge–Kutta method.
© 2009 Elsevier B.V. All rights reserved.
athieu equation

. Introduction

Computation of stability regions is of particular importance in
rder to design and assemble an ion trap. Analytical and matrix
ethods, on one hand, have been widely used to calculate the sta-

ility regions [1–3]. The analytical method allows the analytical
ormulation of an ion trajectory over an unlimited number of cycles
1]. As a weakness of the analytical method in comparison with the

atrix method, it should be noted that analytical method is lim-
ted to the cosine-shaped trapping waveforms [1], and cannot be
irectly used for solution of the more general Hill equation [1,4]. On
he other hand, numerical methods are generally simple and con-
ergent techniques using the Runge–Kutta methods. Among these
ethods, the fourth-order Runge–Kutta (RK4) method is most pop-

lar. It is accurate, stable and easy to program. Nevertheless, for
ome applications one might prefer to use the Runge–Kutta meth-
ds with higher order derivative approximations [5,6].

Some articles deal with two-dimensional quadrupole mass fil-
ers operating in higher regions of stability [7]. These regions are
f interest because they obtain higher mass resolution in com-
arison with the mass filters operating in lower stability regions

3,8,9]. Moreover, they offer the ability to analyze the masses of
on beams with high kinetic energy or unit resolution with ions
f 10 keV energy [3,7]. It is worth noting that with operation in
igher stability regions, only a very small mass range of ions can be
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trapped simultaneously, which are determined by the sizes of the
stability regions. Thus, operation in these regions may be limited
to specialized applications. Computation of such regions is practi-
cally a time-consuming and tedious work to do, and it needs high
accuracy and precision due to the narrowness of the regions. As
an example, one can see the inaccurate first and second stability
diagrams reported by Sadat Kiai et al. [10]. The error in the sec-
ond diagram lies in shifting the stability region to the right, which
corresponds to higher values of q; whereas, in the first diagram,
the lower part of the diagram has been shifted to lower values of
a.

The purpose of this paper is to accurately compute five stabil-
ity regions for a quadrupole ion trap in the a–q plane using the
RK5 method [11] rather than the simpler and most popular algo-
rithm, the so-called fourth-order Runge–Kutta method. The RK5
method simulates the accuracy of the Taylor series method of order
5; whereas, the more common RK4 method simulates it as the order
of 4. In this computation, except for the first region, the stability dia-
grams have been computed for the positive values of the Mathieu
parameters, namely a > 0 and q > 0.

2. Theory

Theoretical treatment of a Paul trap as well as the related formu-

las is well-established, and can be found in the literature [12]. Fig. 1
shows a schematic view of a quadrupole ion trap. It composed of a
ring metallic electrode located symmetrically between two metal-
lic end-cap electrodes. In the figure, the ring electrode has been
grounded; whereas, the electric potential applied to the end-cap

http://www.sciencedirect.com/science/journal/13873806
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Fig. 2. The first stability region for a Paul trap obtained from our RK5 method.

Fig. 3. The second stability region for a Paul trap obtained from our RK5 method.

Fig. 4. The third stability region for a Paul trap obtained from our RK5 method.
Fig. 1. A schematic view of a Paul trap.

lectrodes is

0 = U − V cos ˝t, (1)

here U and V are dc and ac potentials, respectively, and ˝ stands
or the trapping rf angular frequency in rad/s. Considering that r2

0 =
z2

0, the electric field components into the trap become

z = − (U − V cos ˝t)

z2
0

z (2)

r = (U − V cos ˝t)

2z2
0

r. (3)

onsequently, the equations of motion of a particle with mass M
nd charge Q in this field can be expressed by the set of Mathieu
ifferential equations

d2z

d�2
+ (az − 2qz cos 2�)z = 0 (4)

d2r

d�2
+ (ar − 2qr cos 2�)r = 0. (5)

he a and q parameters for z and r components as well as the dimen-
ionless parameter � are defined as follows:

= ˝t

2
(6)

z = −2ar = 4QU

Mz2
0˝2

(7)

z = −2qr = 2QV

Mz2
0˝2

. (8)

. Computational results

To compute the stability regions of the Paul trap, the Eqs. (4) and
5) were solved by using the Runge–Kutta algorithm with higher
rder derivative approximations, namely the RK5 method. Compu-
ations were made for all the values of the Mathieu parameters a and
lying in the selected interval for each region. For this purpose, the

mall and equal steps for a and q parameters were considered. The
teps were selected as 0.005, 0.002, 0.0002, 0.0002 and 0.0001 for
he five stability regions. Figs. 2–6 show the five stability regions in

he a–q plane obtained from our computation for a quadrupole ion
rap using the fifth-order Runge–Kutta method. Because different
onventions are used for the second, the third and other higher sta-
ility regions, we have labeled the five regions on a separate figure
hown as Fig. 7. Moreover, the values of the lower and upper tips of Fig. 5. The fourth stability region for a Paul trap obtained from our RK5 method.
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Fig. 6. The fifth stability region for a Paul trap obtained from our RK5 method.
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Table 1
The values of (a, q) at the lower and upper tips of the five stability regions of a Paul
trap computed in this work.

Region no. Tip a q

I Upper 0.15 1.35
Lower −0.67 0

II Upper 2.84 3.98
Lower 2.41 3.52

III Upper 8.69 8.11
Lower 8.13 7.71

IV Upper 2.818 18.077

[

Mass Spectrom. 247 (2005) 61.
ig. 7. The stability regions I, II, III, IV and V of the Paul trap computed in this work
sing the RK5 method.

he stability diagrams computed in this paper are listed in Table 1.

ne can see the significant difference between Figs. 2 and 3 with

he corresponding results reported by Sadat Kiai et al. [10], which
how that the first and second stability regions are not quite accu-
ate. In that article, the Mathieu differential equations were solved
y matrix techniques using a finite difference method.

[

[

Lower 2.797 18.051

V Upper 17.28 13.59
Lower 16.55 13.14

4. Conclusion

Five stability regions in a Paul trap were accurately computed
by using a numerical algorithm based on the RK5 method. In this
computation, the size of the integration step was considered as 0.02.
Also, the computation was repeated for the integration step size,
0.05, and no significant effects on the final results were found. The
first stability region obtained in this work is in excellent agreement
with that published by Dawson [12].

In general, the Runge–Kutta method with any order is the same
as integration by Simpson’s rule. For the same step size in the RK5
and RK4 algorithms, if the only error at each step is attributed to the
Simpson’s rule, the accumulated error for the RK5 method would
be less than that of the RK4 method. However, it should be noted
that it is not easy to obtain the accuracy of a Runge–Kutta solution,
and it is also beyond the scope of this paper.

The results obtained from our computation show that the first
and second stability regions published in 2005 [10] do not have
enough accuracy. Furthermore, the regions of stability obtained in
this paper have been computed for the first time using the fifth-
order Runge–Kutta method.
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